
P3SL: Personalized Privacy-Preserving
Split Learning on Heterogeneous Edge Devices

Wei Fan∗, JinYi Yoon∗, Xiaochang Li†, Huajie Shao†, Bo Ji∗
∗Department of Computer Science, Virginia Tech, Blacksburg, USA

†Department of Computer Science, William & Mary, Williamsburg, USA
∗{fanwei, jinyiyoon, boji}@vt.edu, †{xli59, hshao}@wm.edu

Abstract—Split Learning (SL) is an emerging privacy-
preserving technique that enables resource-constrained edge
devices to participate in model training by partitioning models
into client-side and server-side sub-models. While SL can reduce
computational load on edge devices, it encounters significant chal-
lenges in heterogeneous environments with varying computing
resources, communication capabilities, environmental conditions,
and privacy requirements. Recent heterogeneous SL frameworks
optimize split points for devices with varying resource con-
straints but often overlook personalized privacy requirements
and local model customization under diverse environmental
conditions. To address this, we propose P3SL, a Personalized
Privacy-Preserving Split Learning framework for heterogeneous,
resource-constrained edge systems. First, we design a person-
alized sequential split learning pipeline that allows each client
to choose a customized split point and maintain local models
tailored to its computational resources, environmental conditions,
and privacy needs. Second, we formulate a bi-level optimization
problem that empowers clients to determine their optimal split
points without revealing private information (e.g., computational
resources, environmental conditions, or privacy requirements) to
the server. This approach balances energy consumption and pri-
vacy leakage while maintaining high accuracy. We have evaluated
P3SL on seven edge devices—including four Jetson Nano P3450,
two Raspberry Pi, and one laptop—using diverse models and
datasets under varying environmental conditions. Results show
that P3SL significantly reduces privacy leakage, lowers energy
consumption by up to 59.12%, and consistently maintains high
accuracy compared to state-of-the-art heterogeneous SL systems.

Index Terms—Split Learning, Edge Computing, Heterogeneity,
Personalized Privacy Protection

I. INTRODUCTION

The rise of Internet-of-Things (IoT) devices has integrated
them into daily life for tasks like sensing, monitoring, machine
learning (ML), and intelligent decision-making [1], [2]. To
protect data privacy, some research proposes training full ML
models locally [3]. However, this approach is impractical
for resource-constrained edge devices due to high energy
consumption and prolonged training time. Split Learning (SL)
addresses these challenges by partitioning ML models into
client-side and server-side sub-models [4]. Unlike Federated
Learning (FL) [5], which keeps the full model on clients, SL
reduces client-side computational load by processing only a
portion of the model.

In real-world SL applications, devices often operate with
diverse computational resources and privacy requirements
in heterogeneous environments. However, most existing SL

Fig. 1: Comparison of SSL, PSL, and P3SL frameworks:
SSL (left): Sequential training with homogeneous split points,
requiring inter-client model sharing and does not support
personalization. PSL (center): Parallel training but still uses
homogeneous split points, resulting in high server resource
cost and reduced accuracy due to lack of personalization.
Our P3SL (right): Personalized split points, adapting to
heterogeneous conditions including computational resources,
privacy requirements, and environmental settings.

approaches assume a homogeneous client environment [6]–
[8], applying the same split point to all devices. The split
point in SL defines where the neural network is divided, with
clients handling layers before it and the server processing the
rest. Sequential Split Learning (SSL) [4] and Parallel Split
Learning (PSL) [9] are the two main homogeneous SL types,
shown in Fig. 1. SSL trains clients sequentially with high
accuracy and low server cost, but requires inter-client model
sharing, limiting personalization and privacy. PSL allows con-
current training without model sharing but lowers accuracy
and demands higher server resources, making it undesired for
large-scale deployments. These approaches also overlook the
varying capabilities and privacy needs in heterogeneous IoT
ecosystems. For example, a tablet in a public area or a Home
Assistant in a private space may jointly train a healthcare
model [10]. The tablet, with more computational resources,
may process less sensitive data, while the resource-limited

TABLE I: Comparison of P3SL with existing SL methods

Methods Energy Privacy Personalized Model Environments
SSL [4] ✗ ✗ ✗ ✗

ARES [11] ✓ ✗ ✗ ✗
ASL [12] ✓ ✗ ✗ ✗

EdgeSplit [13] ✗ ✗ ✗ ✗
P3SL (ours) ✓ ✓ ✓ ✓

Home Assistant device handles highly sensitive private data. A
uniform SL strategy would result in suboptimal performance,
failing to meet the unique requirements of energy and privacy.

Existing works, such as ARES [11], ASL [12], and Edge-
Split [13], have studied heterogeneous SL frameworks that
optimize split points based on individual resource constraints.
These frameworks focus on factors like training latency and
computational resources for each client, offering an improve-
ment over uniform SL strategies. However, these approaches
often neglect several critical issues: (i) Privacy leakage across
varying split points: Different split points expose interme-
diate representations to varying levels of vulnerability [14],
heightening the risk of data reconstruction attacks; (ii) En-
ergy consumption and power constraints under heterogeneous
environments: Real-world deployments often occur in diverse
environmental conditions, such as varying temperature and
humidity, which can significantly impact total energy con-
sumption and peak instantaneous power usage; (iii) Personal-
ized client models and personalized privacy requirements: In
practice, clients have varying privacy requirements based on
their computing resources and environments. A comparison of
P3SL with state-of-the-art frameworks is shown in Table I.

To tackle the problems, we propose P3SL (Personalized
Privacy-Preserving Split Learning), a novel SL framework
that enables client devices to select optimal personalized
split points tailored to varying privacy and energy needs in
heterogeneous environmental conditions. P3SL addresses two
key challenges: (i) how to effectively support numerous het-
erogeneous edge devices in SL, enabling private models with
personalized split points while maintaining high accuracy; and
(ii) how to determine optimal split point and privacy protection
level for each device without revealing sensitive information
(e.g., environments, computational resources, privacy require-
ments) to the server while ensuring high accuracy.

To the best of our knowledge, P3SL is the first work
towards personalized privacy-preserving SL for heterogeneous
edge devices operating under varying environmental condi-
tions. We summarize the main contributions as follows:

• We propose P3SL, a framework featuring a personalized
sequential SL pipeline that enables clients to train person-
alized models without inter-client model sharing, while
maintaining high accuracy in heterogeneous, resource-
constrained edge computing systems. This approach re-
duces update costs and enhances privacy protection
against data reconstruction attacks, directly addressing the
first challenge. We also design a weighted aggregation
method that reduces the frequency of server communica-
tion, significantly improving communication efficiency.

• We formulate a bi-level optimization problem to jointly
select split points and privacy protection levels for each
device. By employing a meta-heuristic approach [15],
[16], clients select their own split points and privacy
levels based on privacy preferences without revealing
sensitive information to the server. This enables the
system to achieve an effective trade-off between energy
consumption, privacy risk, and accuracy.

• We implement P3SL on a testbed of seven edge devices
and evaluate its effectiveness using three model architec-
tures across three datasets under varying environmental
conditions. Our experimental results show that P3SL
improves personalized privacy protection in terms of the
Feature SIMilarity (FSIM) score [17] and significantly
reduces energy consumption by up to 59.12% compared
to existing SL systems while retaining a high accuracy.

II. RELATED WORK

Split Learning Approaches. Existing SL frameworks,
such as SSL [4], [18] and PSL [9], assume uniform split
points across clients, simplifying implementation but fail-
ing to address the diverse resource constraints of heteroge-
neous environments. Recent heterogeneous SL works, such
as ARES [11], ASL [12], and EdgeSplit [13], optimize split
points based on computational latency, communication over-
head, power consumption, accuracy requirements, and trans-
mitted intermediate output size. However, they lack person-
alized privacy protection, which is essential in heterogeneous
settings where privacy risks differ among clients. Addition-
ally, EdgeSplit and ASL are evaluated only in simulations.
Although ARES is implemented on real edge devices, it relies
on a high-capacity server to process server-side model layers
(i.e., the portions of the model executed on the server after the
split point) for all clients concurrently, limiting its scalability
in resource-constrained systems.

Defense Mechanisms against Data Reconstruction At-
tacks in SL. In split learning, attack methods such as input
data reconstruction [14], [19] can recover raw data from
transmitted model parameters or intermediate representations,
leading to privacy leakage problems. Several defense mech-
anisms have been proposed to mitigate these risks, including
adding noise to raw data [20], intermediate representation [21],
[22], or model parameters [23], [24]. Although these ap-
proaches can effectively mitigate data reconstruction attacks,
the performance depends on factors such as the layer from
which outputs are generated (e.g., outputs from deeper layers
are harder to recover [14]). Also, given the resource con-
straints, it is infeasible to fully commit to privacy protection
without considering affordable computations in SL. Existing
methods such as ASL and SSL do not provide personalized
privacy protection for clients with heterogeneous resources. To
address these challenges, P3SL offers a novel SL approach by
integrating personalized privacy protection for heterogeneous
resource-constrained edge devices.

(a) Privacy leakage at three different
training epochs r

(b) Defense with different variance σ
values for Laplacian noise, N (0, σ2)

Fig. 2: Impact of split points on privacy leakage and defense
with different variance

III. MOTIVATION AND KEY INSIGHTS

In this section, we present case studies exploring the corre-
lation between split points, energy consumption, and privacy
leakage levels, motivating the design of P3SL.

A. Key Insights

We first evaluated the impact of personalized split points on
privacy leakage, energy consumption, and power constraints
per device. We implemented the data reconstruction attack
of UnSplit [14] on the VGG16-BN [25] model using the
CIFAR-10 [26] dataset. Privacy leakage is quantified using the
FSIM [17] score, which measures similarity between original
and reconstructed images. FSIM score ranges from 0 to 1,
with higher values indicating a higher risk of privacy leakage.

Privacy Leakage Across Split Points. We explore privacy
leakage across split points by varying the number of training
epochs of 0, 30, and 60 epochs (where the total 100 epochs are
required until saturation). We examine split points from Layer
1 to Layer 10, where higher indices mean that more layers are
processed on the client before sending intermediate outputs to
the server. As depicted in Fig. 2(a), deeper split points lead
to lower FSIM scores, indicating better privacy protection as
reconstruction input data becomes more difficult. Moreover,
FSIM scores remain consistent across the three attack stages,
since the UnSplit attack recovers input data and inverts the
client model simultaneously. Thus, the data reconstruction
results are not correlated with the stage of training.

Observation 1. As evidenced by the FSIM scores, different
split points present varying levels of privacy leakage; a shal-
lower split point poses a higher risk of data reconstruction,
necessitating aggressive noise addition.

Defense Effectiveness. To mitigate data reconstruction
attacks, we employed the noise addition approach from
NoPeekNN [22], injecting Laplacian noise with zero mean
and variance σ2 into the intermediate outputs. We analyzed
FSIM scores across noise levels σ ranging from 0.5 to 2.5
(incremented by 0.5). As shown in Fig. 2(b), we demonstrate
that higher noise levels yield lower FSIM scores, indicating
stronger privacy protection. However, excessive noise (e.g., σ
= 2.0 or 2.5) diminishes distinctions among split points, lead-

(a) Energy consumption and data size (b) CDF of instantaneous power

Fig. 3: Impact of different split points (SP) on energy con-
sumption and instantaneous power

ing to similar FSIM scores across all. This highlights a trade-
off: shallower layers leak more privacy (as in Observation 1)
and require stronger noise, potentially harming accuracy.

Observation 2. To achieve a desirable privacy protection for
each split point, it is essential to determine the minimum noise
injection to reach the target privacy threshold.

Energy Consumption and Power Constraints. We eval-
uate the energy and power implications of split points in an
SSL setting using four 4 GB NVIDIA Jetson Nano P3450
devices [27]. Fig. 3(a) shows the size of intermediate repre-
sentations at different split layers (blue trend) and the average
energy consumption across communication, computation, and
idle states (bar plot). Results indicate that communication
energy scales proportionally with the size of intermediate
representations. Deeper split points produce smaller represen-
tations (i.e., lower data dimensions), reducing communication
energy but increasing computational energy due to more client-
side computation. Layers with the same intermediate size ide-
ally yield the same communication energy, but deeper layers
still incur higher computational energy. Thus, total energy
consumption rises with deeper split points, making it essential
to choose a split point with lower energy consumption.

Furthermore, edge devices often face diverse environmental
conditions, such as temperature variations, seasonal changes,
or location-specific factors, which can cause overheating issues
even in identical devices. Fig. 3(b) presents the cumulative
distribution of instantaneous power measured by the Jetson
Nano devices, illustrating that deeper split points result in
higher peak instantaneous power. To prevent overheating, it
is crucial to ensure instantaneous power stays within the peak
limit set for each client based on their environment conditions.

Observation 3. Deeper split points reduce communication
energy but increase computational energy consumption, in-
dicating that optimizing split points involves balancing these
trade-offs to align with the power constraints of edge devices.

These observations suggest a trade-off between privacy
protection and energy/power consumption across split points:
shallower split points increase (i) privacy leakage; (ii) com-
munication energy; while reducing (iii) computational energy.

Fig. 4: System architecture of P3SL: with s of split points
and σ of privacy protection (noise) levels, clients generate
intermediate representations, inject noise, and upload them
to the server for 1⃝- 9⃝ sequential model training. Every R
epoch, clients upload their local models to the server for 10⃝
weighted aggregation. The process 1⃝- 10⃝ repeats until the
global model converges.

B. Design Goals

Our design aims to achieve two important goals:
(i) Support Personalized Models. To design a training

pipeline that enables each client to maintain a person-
alized model, split point, and privacy protection, accom-
modating resource-heterogeneous devices in SL settings.

(ii) Balance Energy Consumption and Privacy Leakage
Risk. Allow clients choose personalized split points with
privacy protection levels to balance energy consumption
and privacy leakage while ensuring high global model
accuracy. Conduct an approach that effectively addresses
these trade-offs to optimize overall performance across
heterogeneous environments.

IV. P3SL DESIGN

We design P3SL with an SSL system (Fig. 4) that sup-
ports edge devices to have heterogeneous split points and
personalized privacy protection in two ways: 1) personalized
model to keep the private model locally; 2) personalized
privacy protection to adjust the injected noise level. Clients
can choose different split points and noise levels for their
intermediate representations before uploading to the server.
The global model is trained sequentially without inter-client
model sharing. Our system model is detailed below.

A. P3SL Architecture

Let C := {1, 2, · · · , N} denote a set of N heterogeneous
devices with varying computational capabilities. Each client
i ∈ C has its local model W ci and a local dataset Di with
|Di| labeled samples. The local dataset is defined as Di :=

{(xi,j , yi,j)}|Di|
j=1 , where xi,j is the j-th input data sample, and

yi,j is its corresponding label. Hence, the global dataset D is
denoted as D =

⋃
i∈CDi.

For simplicity, we define W a:b := [W a,W a+1, · · · ,W b]
as the model containing layers from a to b. In P3SL, all
clients collaborate to train the global model W := W 1:k,
where k is the total number of layers in the global model.
The global model W serves as the shared server model and is
partitioned at a split point si into two sub-models. For client
i, the first si layers are located on the client side, denoted
as W ci := W 1:si

ci . The remaining layers si + 1 to k are on
server side, denoted as W gi := W si+1:k

gi . The server also
decides the maximum allowable split point smax for all clients,
and each client i selects si ∈ {1, 2, . . . , smax} based on local
privacy requirements and energy consumption constraints. By
definition, 1 ≤ si ≤ smax ≤ k.

The overall training procedure of personalized sequential
split learning in P3SL follows the steps illustrated in Fig. 4:

(i) Forward Propagation on Client-Side Model: After ini-
tializing the global model at the server, P3SL sequentially
selects each client for training. The selected i-th client samples
local labeled data (xi,j , yi,j) ∈ Di and performs forward
propagation through its local model to generate intermediate
representations ẑi,j := g(xi,j | W ci). Here, g(x | W) maps
input data x to ẑ with model W (see 1⃝ 4⃝ 7⃝).

(ii) Privacy-Preserving Intermediate Representation Trans-
mission: The client i injects Laplacian noise ηi,j ∼ N (0, σi

2)
into ẑi,j , where σi is the personalized privacy protection level.
Then, the noise-injected representation ẑi,j + ηi,j and the
corresponding label yi,j are sent to the server (see 2⃝ 5⃝ 8⃝).

(iii) Forward Propagation on Server-Side Model: The server
receives the privacy-protected intermediate representation, pro-
cesses it through the remaining layers of the global model
W gi := W si+1:k, and generate the final prediction ŷi,j .

(iv) Gradient Calculation and Backward propagation: The
server computes gradients based on the loss L(ŷi,j , yi,j |
W ci ⊕W gi), where ⊕ denotes model concatenation: W a:b⊕
W c:d := [W a,W a+1, · · · ,W b,W c,W c+1, · · ·W d]. Dur-
ing backpropagation, the server only updates the layer in W gi

and sends the gradients back to the client. The client then
completes the backward propagation and updates its model
parameters (see 3⃝ 6⃝ 9⃝).

(v) Model Aggregation and the Global Model Updates:
After R epochs, clients upload their local parameters to update
the global model’s first smax layers W 1:smax . All uploaded
parameters W ci will be aggregated using Eq. (1). Missing
layers from si+1 to smax are filled with corresponding global
layers. The global model W is updated as:

W = (
1

N

N∑
i=1

(W ci ⊕W si+1:smax))⊕W smax+1:k. (1)

This aggregation ensures W 1:smax is not overly biased by
clients with larger si, and the aggregated model is not dis-
tributed to preserve personalization of client models (see 10⃝).

This process repeats until all clients finish updates and the
system loss is minimized.

(a) Privacy Leakage Table profiled
by server

(b) Energy and Power Consumption
Table profiled by each client i

Fig. 5: An example of profiling tables

B. Profiling

We introduce the profiling process, including Privacy Leak-
age Table (server-side) and Energy and Power Consumption
Table (client-side), essential for solving the bi-level optimiza-
tion problem (Section V). The server also sets a minimum
accuracy threshold Amin to ensure global model accuracy.

Constructing Privacy Leakage Table. Assume that the
attacker can access the model architecture and intermediate
representations. Since reconstruction attack performances are
similar in all training stages (shown in Fig. 2(a)), we apply
attacking before training [14]. Privacy leakage is measured by
FSIM [17], which quantifies similarity between original and
reconstructed data. Since clients jointly train the global model,
the server simulates attacks on a public dataset to generate the
Privacy Leakage Table. As shown in Fig. 5(a), it records FSIM
scores for split points 1 to smax across noise levels from 0.00
to 2.50 (0.05 interval) and is then distributed to clients.

Constructing Energy and Power Consumption Table. Each
client profiles energy consumption and peak instantaneous
power for split points si ∈ [1, smax]. For each si, the i-th client
generates an Energy and Power Consumption Table (Fig. 5(b))
containing: (i) average total energy Etotal

i (si); and (ii) peak
instantaneous power ppeak

i (si). Meanwhile, the client tests out
its (iii) maximum power threshold Pmax

i to avoid overheating.
Minimum Accuracy Threshold Determination. When

initiating P3SL training, the server sets the minimum accuracy
threshold Amin, which is the global accuracy required to
complete optimization. To establish it, the server simulates
training without noise injection on a public dataset that closely
matches the data distribution of clients, yielding a reference
accuracy Aref as the ideal baseline. During this phase, the
server also tunes and shares hyperparameters with clients. The
threshold Amin is then computed as:

Amin = β ·Aref, (2)

where β is a server-defined discount factor representing ac-
ceptable accuracy loss for privacy, fixed throughout training.

V. PROBLEM FORMULATION AND PROPOSED SOLUTION

In real-world scenarios, clients are often reluctant to share
sensitive information with the server due to privacy concerns.
If the server solely determines split points and noise levels for
all clients, it requires access to client-specific details (e.g.,

environment, computational resources, and privacy require-
ments). To address this, P3SL facilitates joint decision-making
between server and clients to optimize system performance.

In this section, we formulate a bi-level optimization problem
(Section V-A) and propose a solution (Section V-B) that allows
the server and clients to determine the optimal noise levels and
split points jointly. This solution effectively balances the trade-
off between privacy protection and energy efficiency while
maintaining high global accuracy.

A. Bi-Level Optimization Problem Formulation

We define two decision variables: the privacy protection
(noise) level vector σ := [σ1, σ2, · · · , σN], where σi is the
noise level for client i, and the split point vector s :=
[s1, s2, · · · , sN], where si is client i’s split point.

In the lower-level optimization, given the upper-level de-
cision on the noise level σi from the server, the client i
decides its optimal split point si by minimizing the local
objective function f . Since minimizing total energy Etotal

i (si)
and privacy leakage FSIM(σi, si) may conflict, f is formulated
as their weighted sum. The total energy Etotal

i (si) is taken
from the Energy and Power Consumption Table (Fig. 5(b)),
and the privacy leakage FSIM(σi, si) is from the Privacy
Leakage Table (Fig. 5(a)). The trade-off is governed by the
privacy sensitivity coefficient αi ∈ [0, 1], reflecting the privacy
preference of the client i. A higher αi favors more privacy
protection (more noise and deeper split points), while a lower
αi favors energy efficiency (reduced energy with shallower
split points). The local objective function f for each client i
is formulated as:

f(σi, si) := αi · FSIM(σi, si) + (1− αi) · Etotal
i (si). (3)

To optimize the privacy across all clients while maintaining
high global model accuracy, the server (upper-level) decides
the privacy protection level vector σ to minimize the total
privacy leakage FSIM(σi, si) across all clients. Meanwhile,
the server ensures that the global model accuracy Gacc(σ, s)
remains above the minimum accuracy threshold Amin. This
bi-level optimization problem is formulated as:

min
σ,s

F (σ, s) :=

N∑
i=1

FSIM(σi, si) (4a)

s.t. si ∈ argmin
si

f(σi, si),∀i ∈ C, (4b)

Gacc(σ, s) ≥ Amin, (4c)

ppeak
i (si) ≤ Pmax

i ,∀i ∈ C. (4d)

Here, Eq. (4b) states that each client i selects si by minimizing
the local objective function f ; Eq. (4c) ensures that the global
accuracy Gacc(σ, s) stays above the threshold Amin; Eq. (4d)
ensures client i’s peak power ppeak

i (si) does not exceed its
maximum threshold Pmax

i , preventing overheating. The value
of Pmax

i is from client-side profiling process (Section IV-B).

B. Proposed Solution

We employ a meta-heuristic algorithm [15] to solve the bi-
level optimization problem. The upper-level problem (Eq. (4a))
optimizes privacy across clients while ensuring global accu-
racy meets the threshold. The lower-level problem (Eq. (3))
balances energy consumption and privacy leakage for each
client. These are solved sequentially to allow iterative refine-
ment and convergence toward an optimal solution [28]. The
process begins with the server generating an initial solution
based on the upper-level objective and distributing it to clients.
Each client then selects its split point by minimizing the local
objective and sends its solution back to the server. This nested
process repeats until the overall optimization is convergent.

We implement this approach in the P3SL framework
through three key steps:

(i) Initial Upper-Level Solution. The server generates a
Noise Assignment Table based on the Privacy Leakage Table,
mapping noise levels to split points to ensure low privacy
leakage. The table is then distributed to the clients, allowing
them to select the optimal split points.

(ii) Initial Lower-Level Solution. Each client i first sets its
personalized privacy sensitivity coefficient αi ∈ [0, 1]. Then, it
identifies the deepest split point s(ci)max that avoids overheating,
and the point with lowest energy consumption s

(ci)
min . If energy

increases with depth, the client selects the optimal split point
from 1 to s

(ci)
max ; if it decreases, the split point choice is between

s
(ci)
min and s

(ci)
max . Finally, the client minimizes the local objective

function (Eq. (3)) using the server-provided Noise Assignment
Table, then sends its chosen optimal split point si to the server.

(iii) Iterative Optimizing. The server constructs s and σ,
performs sequential training, and computes global accuracy
Gacc(σ, s). If accuracy meets or exceeds Amin, optimization is
finished. Otherwise, the server updates the Noise Assignment
Table using reassignment strategies and redistributes it to
clients. Clients then re-optimize their split points as in (ii),
repeating the process until global accuracy reaches Amin.

Initial Noise Assignment Table. To generate the initial
Noise Assignment Table, the server defines an FSIM threshold
TFSIM to prevent accurate classification of the reconstructed
data. Specifically, the server uses a well-trained model to
evaluate the reconstructed data under varying noise levels.
Along with the Privacy Leakage Table, TFSIM is set where
the classification accuracy drops below 1

Nclass
, with Nclass as

the number of classes. The server then selects, for each split
point, the minimum noise level that keeps FSIM below TFSIM,
forming the Noise Assignment Table, which is distributed to
clients for their initial split point selection.

Noise Reassignment Strategies. If global accuracy
Gacc(σ, s) falls below Amin, the server reduces noise levels
to enhance model utility. The server updates the Noise As-
signment Table and redistributes it to clients. Denote At as
the global accuracy in round t, and σt

i as noise level for the
client i in round t. For round t+ 1, the server updates σi as:

σt+1
i = σt

i × (1− 2 · (Amin −At)). (5)

A larger difference between At and Amin results in greater a
noise reduction, thereby improving the global accuracy.

VI. EVALUATION

This section addresses key research questions (RQs) on
P3SL’s privacy protection, energy efficiency, adaptability, and
overall performance through comprehensive evaluations.

• RQ1: How does P3SL compare to baseline methods in
terms of privacy leakage, energy consumption, and model
accuracy under heterogeneous environmental conditions?

• RQ2: How flexible is P3SL in adapting to varying en-
vironmental conditions, such as temperature and cooling
settings, and maintaining consistent performance?

• RQ3: How effective is P3SL for personalized privacy
protection for individual clients with diverse resource
constraints and privacy requirements?

A. Implementation and Deployment

Device Settings. We used four 4GB NVIDIA Jetson Nano
(P3450) devices, two 4GB Raspberry Pi devices, and one
GPU-less laptop as edge devices, along with one central
server with dual NVIDIA GeForce RTX 4090 GPUs. Net-
work connections and data transmission are established via
WebSocket APIs. Power consumption is monitored in real
time using the Kasa system [29].

Environment Settings. We conduct experiments in two
controlled environments. In each setting, devices are placed in
separate rooms with varying temperatures, and their cooling
fans are toggled accordingly. For the laptop (Client 7), the fan
operates automatically. Detailed environmental conditions are
listed in Table II. To address potential overheating, we measure
the deepest (i.e., maximum) split points s

(ci)
max by monitoring

each client’s instantaneous power consumption.
Datasets. We evaluate the system using (i) CIFAR-10 [26],

(ii) Fashion-MNIST [30], and (iii) Flower-102 [31] datasets.
Model Architecture, training setup and Personalized Set-

tings. We leverage three models ranging from lightweight to
large-scale: ResNet18 (11M), ResNet101 (43M), and VGG16-
BN (135M), with the deepest split point smax = 10. Each client
trains with a batch size of 256 and a learning rate of 0.01;
models are aggregated every 5 epochs. P3SL applies sleep-
awake scheduling [32], recording energy only during awake
mode to reduce idle consumption. Clients use personalized
privacy sensitivity coefficients to reflect their energy–privacy
trade-off preferences: α1 = 0.4, α2 = 0.2, α3 = 0.5, α4 =
0.9, α5 = 0.7, α6 = 0.3, α7 = 0.8. The discount factor is
set to β = 5%, representing the maximum global accuracy
sacrifice tolerated for clients’ enhanced privacy.

Evaluation Metrics. We evaluate system performance using
three metrics: (i) overall and personalized privacy leakage, (ii)
energy consumption, and (iii) accuracy. Overall privacy leak-
age, FSIMtotal, reflects system-wide leakage and is computed
by averaging the FSIM scores of all clients over five rounds.
We also investigate each client’s personalized leakage, denoted
as FSIM. A lower FSIM indicates stronger privacy, with even
a 0.025 drop marking a significant reduction [17]. Energy

TABLE II: Two environment condition settings, where AC
Temp. refers to the set temperature of the air conditioner

Client ID Environment Setting A Environment Setting B
AC Temp. Cooling Fan AC Temp. Cooling Fan

1 (Jetson Nano) 30 ◦C OFF 30 ◦C ON
2 (Jetson Nano) 30 ◦C ON 20 ◦C OFF
3 (Jetson Nano) 20 ◦C OFF 15 ◦C OFF
4 (Jetson Nano) 20 ◦C ON 15 ◦C ON
5 (Raspberry Pi) 20 ◦C OFF 20 ◦C OFF
6 (Raspberry Pi) 20 ◦C ON 20 ◦C ON

7 (Laptop) 20 ◦C AUTO 20 ◦C AUTO

consumption, Etotal, refers to the average per-epoch energy
consumption of all edge devices, including communication,
computation, and idle states. Lastly, accuracy represents the
global model’s testing accuracy, indicating its utility.

Baselines. We compare P3SL against three state-of-the-
art baselines: (i) ASL [12] and (ii) ARES [11], both support-
ing heterogeneous split points in PSL; (iii) Sequential Split
Learning (SSL) [4], a classic SL framework enforcing homoge-
neous split points. SSL requires transmitting model parameters
between clients, thus limiting its support for heterogeneous
split points. Since none of these baselines account for privacy
leakage, we ensure a fair comparison by applying the same
noise injection with the same variance N (0, σ2 = 2.52) as
used in P3SL to all baselines.

B. RQ1: Privacy Leakage, Energy Consumption, and Global
Model Accuracy

We first evaluate the overall performance of P3SL in pri-
vacy leakage, energy consumption, and global model accuracy
compared to the baselines under environmental setting A.

Privacy Leakage and Accuracy. As shown in Table III,
P3SL consistently reduces overall privacy leakage while main-
taining high global accuracy, leveraging sequential SL without
overloading the server. Although all methods apply the same
noise injection defense, P3SL outperforms baselines by jointly
optimizing split points and privacy levels per client via bi-level
optimization, ensuring a more appropriate trade-off between
privacy protection and energy consumption. In contrast, the
baselines do not account for privacy leakage when selecting
split points, leading to inefficient protection. Some clients may
be overprotected with large noise, especially when applied
to deeper layers, which yields minimal privacy gains but
significantly harms accuracy. P3SL also preserves person-
alized client models by avoiding parameter sharing, further
enhancing privacy. By integrating privacy into personalized
split point selection, P3SL enhances overall privacy protection
without compromising much accuracy. While P3SL has a
bit longer training time than PSL methods (e.g., 418s/epoch
for ResNet18 with F-MNIST vs. 252s/epoch for ARES and
ASL), it remains practical, and the improved accuracy from
sequential SL justifies the additional cost.

Energy Consumption. As shown in Table III, P3SL re-
duces total energy consumption by up to 38.68% and 59.12%
compared to ASL and SSL, respectively. ASL’s high en-
ergy consumption results from its reliance on PSL, which

TABLE III: Accuracy, privacy leakage, and energy consump-
tion performance compared to baselines: smaller FSIMtotal
and Etotal indicate better privacy protection and less energy
consumption for environment setting A (See Table II)

Model Dataset System Accuracy FSIMtotal Etotal (kJ)

VGG16-BN

CIFAR-10

P3SL 0.90 (↑) 2.52 (↓) 4390 (↓)
ASL 0.84 2.55 6503
ARES 0.85 2.57 6452
SSL 0.86 2.63 8446

Fashion-MNIST

P3SL 0.92 (↑) 2.52 (↓) 5953 (↓)
ASL 0.85 2.60 9443
ARES 0.84 2.58 9393
SSL 0.84 2.59 14562

FLOWER-102

P3SL 0.89 (↑) 2.52 (↓) 617 (↓)
ASL 0.84 2.56 902
ARES 0.83 2.54 894
SSL 0.86 2.57 1335

ResNet18

CIFAR-10

P3SL 0.91 (↑) 2.51 (↓) 6980 (↓)
ASL 0.86 2.59 9896
ARES 0.85 2.58 9994
SSL 0.84 2.53 13582

Fashion-MNIST

P3SL 0.92 (↑) 2.51 (↓) 9566 (↓)
ASL 0.86 2.59 13744
ARES 0.88 2.63 13588
SSL 0.85 2.58 19942

FLOWER-102

P3SL 0.91 (↑) 2.51 (↓) 1004 (↓)
ASL 0.84 2.60 1482
ARES 0.84 2.59 1421
SSL 0.88 2.62 2005

ResNet101

CIFAR-10

P3SL 0.92 (↑) 2.50 (↓) 7012 (↓)
ASL 0.85 2.59 10799
ARES 0.86 2.61 11023
SSL 0.89 2.61 12811

Fashion-MNIST

P3SL 0.94 (↑) 2.50 (↓) 9467 (↓)
ASL 0.87 2.61 15077
ARES 0.87 2.60 15231
SSL 0.91 2.62 16870

FLOWER-102

P3SL 0.91 (↑) 2.45 (↓) 1023 (↓)
ASL 0.87 2.59 1600
ARES 0.90 2.63 1507
SSL 0.87 2.60 2346

requires devices to remain actively engaged in computation
for extended periods while waiting for stragglers to finish
training. ASL also lacks a parallel execution management,
further leading to energy inefficiency. In contrast, SSL’s energy
inefficiencies primarily stem from frequent communication, as
model parameters must be repeatedly transmitted to initialize
adjacent clients’ training. We address these issues by employ-
ing a weighted aggregation technique, reducing the frequency
of parameter uploads to the server and eliminating the need to
distribute aggregated weights back to clients. Additionally, the
use of sleep-wake scheduling minimizes energy consumption
during idle time in the sequential training process.

Remark 1. Personalized split points with personalized models
in P3SL significantly reduce privacy leakage risks and system
energy consumption while maintaining high accuracy.

C. RQ2: Impact of Heterogeneous Environment Settings

To evaluate the impact of environmental settings, we com-
pare total system privacy leakage (FSIMtotal) and accuracy
across P3SL, ASL, ARES, and SSL under two heterogeneous
settings in Table IV. While environmental differences lead to

TABLE IV: Accuracy, privacy leakage, and energy consump-
tion performance for VGG16-BN with CIFAR-10 dataset
compared to baselines for heterogeneous environment settings

Environment System Accuracy FSIMtotal Etotal (kJ)

Environment A

P3SL 0.90 (↑) 2.52 (↓) 4390 (↓)
ASL 0.84 2.55 6503
ARES 0.85 2.57 6452
SSL 0.86 2.63 8446

Environment B

P3SL 0.91 (↑) 2.51 (↓) 4433 (↓)
ASL 0.86 2.56 6299
ARES 0.87 2.57 6168
SSL 0.89 2.60 8126

TABLE V: The effect of heterogeneous split points and per-
sonalized privacy protection using VGG16-BN in environment
setting A. FSIM represents the privacy leakage level (higher
is worse). Small FSIM differences indicate notable privacy
variation. αi is a personalized privacy sensitivity coefficient.
The FSIM is shown both before and after noise injection.

Client ID Split Point αi Noise Injection FSIM (Before → After)
1 (Jetson Nano) 2 0.4 N (0, 1.652) 0.53 → 0.36
2 (Jetson Nano) 3 0.2 N (0, 1.152) 0.43 → 0.36
3 (Jetson Nano) 5 0.5 N (0, 0.22) 0.41 → 0.37
4 (Jetson Nano) 10 0.9 N (0, 0.022) 0.37 → 0.36
5 (Raspberry Pi) 1 0.7 N (0, 2.152) 0.53 → 0.37
6 (Raspberry Pi) 2 0.3 N (0, 1.652) 0.53 → 0.36

7 (Laptop) 10 0.8 N (0, 0.022) 0.37 → 0.35

varied energy profiles and optimal split points per client, P3SL
consistently achieves the highest accuracy and lowest privacy
leakage. This demonstrates the effectiveness of bi-level opti-
mization design in maintaining high accuracy and minimizing
system privacy leakage across heterogeneous environments.

Remark 2. P3SL demonstrates robustness in maintaining
both high accuracy and low privacy leakage across varying
environments through its adaptive noise adjustment and bi-
level optimization mechanism.

D. RQ3: Personalized Privacy Evaluation

We evaluate how P3SL enables personalized privacy pro-
tection for clients with heterogeneous resource constraints and
privacy requirements. We further analyze the impact of varying
the privacy sensitivity coefficient αi.

Personalized Noise Injection and Privacy Requirements.
As shown in Table V, each client in P3SL selects its split point
based on computational resources, privacy preference, and
power constraints. Personalized privacy protection in P3SL
encompasses two components: personalized noise injection
and the personalized privacy requirement, represented by
the privacy sensitivity coefficient αi. Clients with higher αi

prioritize privacy protection by selecting deeper split points,
which inherently offer stronger privacy due to more number
of layers involved. For instance, Client 4 and Client 7, with
high αi, select split point 10, requiring minimal noise injection
(σ = 0.02) to achieve privacy preservation. Their correspond-
ing FSIM reduces from 0.366 → 0.355 and 0.366 → 0.354,
respectively. In contrast, clients with lower αi prioritize en-

(a) Environment setting A (b) Environment setting B

Fig. 6: Optimal split point selection for different personalized
privacy sensitivity coefficient αi

ergy efficiency, selecting shallower split points where privacy
leakage risks are higher. To compensate, these clients require
higher levels of noise injection to protect privacy. For example,
Client 2 and Client 6, with low αi, select split point 3
(σ = 1.15) and split point 2 (σ = 1.65), reducing FSIM
from 0.428 → 0.356 and 0.532 → 0.360, respectively. This
approach reflects personalized privacy protection, as clients
adapt their split point selection and noise injection based on
their αi, significantly reducing FSIM across all clients.

Impact of Personalized Privacy Sensitivity Coefficient
αi. We analyze the impact of varying αi from 0 → 1 in 0.1 in-
tervals for each client. As shown in Fig. 6 in two environment
settings (Table II), clients with smaller αi prioritize energy
efficiency and prefer shallower split points. Conversely, as αi

increases, clients prefer deeper split points to enhance privacy
protection. Additionally, some split points in the middle appear
to be sweet spots, offering smaller intermediate representations
that save communication energy while providing better privacy
protection compared to shallower split points.

Remark 3. P3SL suggests that personalized privacy preser-
vation can significantly mitigate privacy risks tailored to each
heterogeneous resource-constrained client and environment.

VII. DISCUSSION

This section discusses additional privacy concerns and the
server profiling cost in P3SL.

Additional Privacy Concerns. Although P3SL enhances
privacy through noise-injected intermediate outputs, risks re-
main during model and label sharing. Gradient Leakage At-
tacks (GLA) can exploit gradients from client-server commu-
nication to reconstruct inputs [33]; however, our use of noise
significantly limits such risks [34]. Label leakage, while not
affecting our threat model, can be mitigated by integrating
techniques like U-shaped SL [35], allowing clients to retain
labels locally for further privacy improvement.

Server Profiling Cost. P3SL requires one-time server-
side profiling to construct the Privacy Leakage Table, in-
troducing slight computational overhead. As privacy leakage
is model-dependent, a single dataset suffices for this step.
Centralized profiling ensures consistent privacy normalization
across clients and avoids additional computation on resource-
constrained devices, supporting fair and consistent privacy
protection for all clients while optimizing resource efficiency.

VIII. CONCLUSION

We proposed P3SL, a novel SL framework that enables
clients to maintain personalized privacy protection tailored to
their heterogeneous resource constraints and deployment envi-
ronments. P3SL incorporates a sequential training architecture
with a weighted aggregation technique, allowing each edge de-
vice to maintain personalized local models, privacy protection,
and heterogeneous split points. Additionally, P3SL employs
bi-level optimization to let each client strategically select
optimal split points, effectively balancing energy efficiency,
privacy leakage risk, and high accuracy. We implemented and
deployed P3SL on various edge devices and conducted exten-
sive evaluations. Results consistently demonstrated that P3SL
can effectively achieve better personalized privacy protection
and less energy consumption while maintaining high accu-
racy, validating its effectiveness in heterogeneous, resource-
constrained distributed learning environments.

For future work, we will extend P3SL to include models
beyond image classification (e.g., transformer architectures)
and other data types (e.g., tabular and time-series data). Addi-
tionally, incorporating advanced client selection mechanisms
that prioritize high-quality data offers further potential to
enhance global model robustness and training performance.

ACKNOWLEDGMENT

This research was supported in part by NSF grant CNS-
2315851, the Commonwealth Cyber Initiative (CCI), and a
Virginia Tech Presidential Postdoctoral Fellowship.

REFERENCES

[1] S. Ye, L. Zeng, X. Chu, G. Xing, and X. Chen, “Asteroid: Resource-
efficient hybrid pipeline parallelism for collaborative dnn training on
heterogeneous edge devices,” in Proceedings of the 30th Annual Inter-
national Conference on Mobile Computing and Networking, 2024, pp.
312–326.

[2] Thapa et al., “Splitfed: When federated learning meets split learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 8, 2022, pp. 8485–8493.

[3] S. Zhu, T. Voigt, J. Ko, and F. Rahimian, “On-device training: A first
overview on existing systems,” arXiv preprint arXiv:2212.00824, 2022.

[4] O. Gupta and R. Raskar, “Distributed learning of deep neural network
over multiple agents,” Journal of Network and Computer Applications,
vol. 116, pp. 1–8, 2018.

[5] C. E. Heinbaugh, E. Luz-Ricca, and H. Shao, “Data-free one-shot
federated learning under very high statistical heterogeneity,” in The
Eleventh International Conference on Learning Representations, 2023.

[6] C. Thapa, M. A. P. Chamikara, and S. A. Camtepe, Advancements
of Federated Learning Towards Privacy Preservation: From Federated
Learning to Split Learning. Cham: Springer International Publishing,
2021, pp. 79–109.

[7] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A. Camtep,
H. Kim, and S. Nepal, “End-to-end evaluation of federated learning and
split learning for internet of things,” in 2020 International Symposium
on Reliable Distributed Systems (SRDS), 2020, pp. 91–100.

[8] Z. Lin, G. Qu, X. Chen, and K. Huang, “Split learning in 6g edge
networks,” IEEE Wireless Communications, pp. 1–7, 2024.

[9] J. Jeon and J. Kim, “Privacy-sensitive parallel split learning,” in 2020
International Conference on Information Networking (ICOIN). IEEE,
2020, pp. 7–9.

[10] R. Taylor, “Inside the AI care home: the smart tech making old people
safer,” The Sunday Times, Nov. 2024.

[11] E. Samikwa, A. D. Maio, and T. Braun, “Ares: Adaptive resource-aware
split learning for internet of things,” Computer Networks, vol. 218, p.
109380, 2022.

[12] Z. Li, W. Wu, S. Wu, and W. Wang, “Adaptive split learning over energy-
constrained wireless edge networks,” 2024.

[13] M. Zhang, J. Cao, Y. Sahni, X. Chen, and S. Jiang, “Resource-efficient
parallel split learning in heterogeneous edge computing,” arXiv preprint
arXiv:2403.15815, 2024.

[14] E. Erdoğan, A. Küpçü, and A. E. Çiçek, “Unsplit: Data-oblivious
model inversion, model stealing, and label inference attacks against
split learning,” in Proceedings of the 21st Workshop on Privacy in the
Electronic Society, 2022, pp. 115–124.

[15] Sinha et al., “A review on bilevel optimization: From classical to
evolutionary approaches and applications,” IEEE Transactions on Evo-
lutionary Computation, vol. 22, no. 2, pp. 276–295, 2018.

[16] W. Yao, C. Yu, S. Zeng, and J. Zhang, “Constrained bi-level opti-
mization: Proximal lagrangian value function approach and hessian-free
algorithm,” ArXiv, vol. abs/2401.16164, 2024.

[17] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “Fsim: A feature similarity
index for image quality assessment,” IEEE Transactions on Image
Processing, vol. 20, no. 8, pp. 2378–2386, 2011.

[18] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[19] D. Pasquini, G. Ateniese, and M. Bernaschi, “Unleashing the tiger:
Inference attacks on split learning,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 2113–2129.

[20] S. A. Khowaja, I. H. Lee, K. Dev, M. A. Jarwar, and N. M. F. Qureshi,
“Get your foes fooled: Proximal gradient split learning for defense
against model inversion attacks on iomt data,” IEEE Transactions on
Network Science and Engineering, 2022.

[21] O. Li, J. Sun, X. Yang, W. Gao, H. Zhang, J. Xie, V. Smith, and
C. Wang, “Label leakage and protection in two-party split learning,”
in International Conference on Learning Representations, 2022.

[22] T. Titcombe, A. J. Hall, P. Papadopoulos, and D. Romanini, “Practical
defences against model inversion attacks for split neural networks,” ICLR
Workshop on Distributed and Private Machine Learning (DPML), 2021.

[23] N. Haim, G. Vardi, G. Yehudai, O. Shamir, and M. Irani, “Reconstruct-
ing training data from trained neural networks,” Advances in Neural
Information Processing Systems, vol. 35, pp. 22 911–22 924, 2022.

[24] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in neural information processing systems, vol. 32, 2019.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR, San Diego, CA, USA, May 7-9, 2015.

[26] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.

[27] N. Corporation, “Jetson nano - powerful ai at your edge.” [On-
line]. Available: https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-nano/product-development/

[28] E.-G. Talbi, A Taxonomy of Metaheuristics for Bi-level Optimization.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–39.

[29] I. Kasa Companies, “python-kasa: Python api for tp-link smarthome
products.”

[30] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” ArXiv, vol.
abs/1708.07747, 2017.

[31] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in Indian Conference on Computer Vision,
Graphics and Image Processing, Dec 2008.

[32] M. U. Rehman, I. Uddin, M. Adnan, A. Tariq, and S. Malik, “Vta-smac:
Variable traffic-adaptive duty cycled sensor mac protocol to enhance
overall qos of s-mac protocol,” IEEE Access, vol. 9, pp. 33 030–33 040,
2021.

[33] H. Yang, M. Ge, D. Xue, K. Xiang, H. Li, and R. Lu, “Gradient leakage
attacks in federated learning: Research frontiers, taxonomy, and future
directions,” IEEE Network, vol. 38, no. 2, pp. 247–254, 2024.

[34] X. Liu, S. Cai, Q. Zhou, S. Guo, R. Li, and K. Lin, “Gradient
diffusion: A perturbation-resilient gradient leakage attack,” CoRR, vol.
abs/2407.05285, 2024.

[35] Z. Zhao, D. Liu, Y. Cao, T. Chen, S. Zhang, and H. Tang, “U-shaped split
federated learning: An efficient cross-device learning framework with
enhanced privacy-preserving,” in 2023 9th International Conference on
Computer and Communications (ICCC), 2023, pp. 2182–2186.

